Entangleability of cones (1911.09663v3)
Abstract: We solve a long-standing conjecture by Barker, proving that the minimal and maximal tensor products of two finite-dimensional proper cones coincide if and only if one of the two cones is generated by a linearly independent set. Here, given two proper cones $C_1$, $C_2$, their minimal tensor product is the cone generated by products of the form $x_1 \otimes x_2$, where $x_1 \in C_1$ and $x_2 \in C_2$, while their maximal tensor product is the set of tensors that are positive under all product functionals $f_1 \otimes f_2$, where $f_1$ is positive on $C_1$ and $f_2$ is positive on $C_2$. Our proof techniques involve a mix of convex geometry, elementary algebraic topology, and computations inspired by quantum information theory. Our motivation comes from the foundations of physics: as an application, we show that any two non-classical systems modelled by general probabilistic theories can be entangled.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.