Papers
Topics
Authors
Recent
2000 character limit reached

Techniques to Reduce $π/4$-Parity-Phase Circuits, Motivated by the ZX Calculus (1911.09039v2)

Published 20 Nov 2019 in quant-ph

Abstract: To approximate arbitrary unitary transformations on one or more qubits, one must perform transformations which are outside of the Clifford group. The gate most commonly considered for this purpose is the T = diag(1, exp(i \pi/4)) gate. As T gates are computationally expensive to perform fault-tolerantly in the most promising error-correction technologies, minimising the "T-count" (the number of T gates) required to realise a given unitary in a Clifford+T circuit is of great interest. We describe techniques to find circuits with reduced T-count in unitary circuits, which develop on the ideas of Heyfron and Campbell [arXiv:1712.01557] with the help of the ZX calculus. Following [arXiv:1712.01557], we reduce the problem to that of minimising the T count of a CNOT+T circuit. The ZX calculus motivates a further reduction to simplifying a product of commuting "\pi/4-parity-phase" operations: diagonal unitary transformations which induce a relative phase of exp(i \pi/4) depending on the outcome of a parity computation on the standard basis (which motivated Kissinger and van de Wetering [1903.10477] to introduce "phase gadgets"). For a number of standard benchmark circuits, we show that these techniques -- in some cases supplemented by the TODD subroutine of Heyfron and Campbell [arXiv:1712.01557] -- yield T-counts comparable to or better than the best previously known results.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.