Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Retrospective and Prospective Mixture-of-Generators for Task-oriented Dialogue Response Generation (1911.08151v2)

Published 19 Nov 2019 in cs.CL, cs.AI, and cs.IR

Abstract: Dialogue response generation (DRG) is a critical component of task-oriented dialogue systems (TDSs). Its purpose is to generate proper natural language responses given some context, e.g., historical utterances, system states, etc. State-of-the-art work focuses on how to better tackle DRG in an end-to-end way. Typically, such studies assume that each token is drawn from a single distribution over the output vocabulary, which may not always be optimal. Responses vary greatly with different intents, e.g., domains, system actions. We propose a novel mixture-of-generators network (MoGNet) for DRG, where we assume that each token of a response is drawn from a mixture of distributions. MoGNet consists of a chair generator and several expert generators. Each expert is specialized for DRG w.r.t. a particular intent. The chair coordinates multiple experts and combines the output they have generated to produce more appropriate responses. We propose two strategies to help the chair make better decisions, namely, a retrospective mixture-of-generators (RMoG) and prospective mixture-of-generators (PMoG). The former only considers the historical expert-generated responses until the current time step while the latter also considers possible expert-generated responses in the future by encouraging exploration. In order to differentiate experts, we also devise a global-and-local (GL) learning scheme that forces each expert to be specialized towards a particular intent using a local loss and trains the chair and all experts to coordinate using a global loss. We carry out extensive experiments on the MultiWOZ benchmark dataset. MoGNet significantly outperforms state-of-the-art methods in terms of both automatic and human evaluations, demonstrating its effectiveness for DRG.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiahuan Pei (16 papers)
  2. Pengjie Ren (95 papers)
  3. Christof Monz (53 papers)
  4. Maarten de Rijke (261 papers)
Citations (16)
Youtube Logo Streamline Icon: https://streamlinehq.com