Poisson-Lie U-duality in Exceptional Field Theory (1911.07833v3)
Abstract: Poisson-Lie duality provides an algebraic extension of conventional Abelian and non-Abelian target space dualities of string theory and has seen recent applications in constructing quantum group deformations of holography. Here we demonstrate a natural upgrading of Poisson-Lie to the context of M-theory using the tools of exceptional field theory. In particular, we propose how the underlying idea of a Drinfeld double can be generalised to an algebra we call an exceptional Drinfeld algebra. These admit a notion of "maximally isotropic subalgebras" and we show how to define a generalised Scherk-Schwarz truncation on the associated group manifold to such a subalgebra. This allows us to define a notion of Poisson-Lie U-duality. Moreover, the closure conditions of the exceptional Drinfeld algebra define natural analogues of the cocycle and co-Jacobi conditions arising in Drinfeld double. We show that upon making a further coboundary restriction to the cocycle that an M-theoretic extension of Yang-Baxter deformations arise. We remark on the application of this construction as a solution-generating technique within supergravity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.