Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

On genus one mirror symmetry in higher dimensions and the BCOV conjectures (1911.06734v4)

Published 15 Nov 2019 in math.AG and math.DG

Abstract: The mathematical physicists Bershadsky-Cecotti-Ooguri-Vafa (BCOV) proposed, in a seminal article from '94, a conjecture extending genus zero mirror symmetry to higher genera. With a view towards a refined formulation of the Grothendieck-Riemann-Roch theorem, we offer a mathematical description of the BCOV conjecture at genus one. As an application of the arithmetic Riemann-Roch theorem of Gillet-Soul\'e and of our previous results on the BCOV invariant, we establish this conjecture for Calabi-Yau hypersurfaces in projective spaces. Our contribution takes place on the $B$-side, and together with the work of Zinger on the $A$-side, it provides the first complete examples of the mirror symmetry program in higher dimensions. The case of quintic threefolds was studied by Fang-Lu-Yoshikawa. Our approach also lends itself to arithmetic considerations of the BCOV invariant, and we study a Chowla-Selberg type theorem expressing it in terms of special $\Gamma$ values for certain Calabi-Yau manifolds with complex multiplication.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.