Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Patients Behavior Detection in Real-time using mmWave Radar and Deep CNNs (1911.06363v1)

Published 14 Nov 2019 in eess.SP, cs.LG, and stat.ML

Abstract: To address potential gaps noted in patient monitoring in the hospital, a novel patient behavior detection system using mmWave radar and deep convolution neural network (CNN), which supports the simultaneous recognition of multiple patients' behaviors in real-time, is proposed. In this study, we use an mmWave radar to track multiple patients and detect the scattering point cloud of each one. For each patient, the Doppler pattern of the point cloud over a time period is collected as the behavior signature. A three-layer CNN model is created to classify the behavior for each patient. The tracking and point clouds detection algorithm was also implemented on an mmWave radar hardware platform with an embedded graphics processing unit (GPU) board to collect Doppler pattern and run the CNN model. A training dataset of six types of behavior were collected, over a long duration, to train the model using Adam optimizer with an objective to minimize cross-entropy loss function. Lastly, the system was tested for real-time operation and obtained a very good inference accuracy when predicting each patient's behavior in a two-patient scenario.

Citations (55)

Summary

We haven't generated a summary for this paper yet.