Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mean-field reflected backward stochastic differential equations (1911.06079v1)

Published 14 Nov 2019 in math.PR

Abstract: In this paper, we study a class of reflected backward stochastic differential equations (BSDEs) of mean-field type, where the mean-field interaction in terms of the distribution of the $Y$-component of the solution enters in both the driver and the lower obstacle. We consider in details the case where the lower obstacle is a deterministic function of $(Y,\E[Y])$ and discuss the more general dependence on the distribution of $Y$. Under mild Lipschitz and integrability conditions on the coefficients, we obtain the well-posedness of such a class of equations. Under further monotonicity conditions, we show convergence of the standard penalization scheme to the solution of the equation, which hence satisfies a minimality property. This class of equations is motivated by applications in pricing life insurance contracts with surrender options.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.