Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards an $O(\frac{1}{t})$ convergence rate for distributed dual averaging (1911.05979v2)

Published 14 Nov 2019 in math.OC

Abstract: Recently, distributed dual averaging has received increasing attention due to its superiority in handling constraints and dynamic networks in multiagent optimization. However, all distributed dual averaging methods reported so far considered nonsmooth problems and have a convergence rate of $O(\frac{1}{\sqrt{t}})$. To achieve an improved convergence guarantee for smooth problems, this work proposes a second-order consensus scheme that assists each agent to locally track the global dual variable more accurately. This new scheme in conjunction with smoothness of the objective ensures that the accumulation of consensus error over time caused by incomplete global information is bounded from above. Then, a rigorous investigation of dual averaging with inexact gradient oracles is carried out to compensate the consensus error and achieve an $O(\frac{1}{t})$ convergence rate. The proposed method is examined in a large-scale LASSO problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.