Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Combinatorics of the double-dimer model (1911.04079v2)

Published 11 Nov 2019 in math.CO

Abstract: We prove that the partition function for tripartite double-dimer configurations of a planar bipartite graph satisfies a recurrence related to the Desnanot-Jacobi identity from linear algebra. A similar identity for the dimer partition function was established nearly 20 years ago by Kuo and has applications to random tiling theory and the theory of cluster algebras. This work was motivated in part by the potential for applications in these areas. Additionally, we discuss an application to Donaldson-Thomas and Pandharipande-Thomas theory which will be the subject of a forthcoming paper. The proof of our recurrence requires generalizing work of Kenyon and Wilson; specifically, lifting their assumption that the nodes of the graph are black and odd or white and even.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.