Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Machine to Machine framework for the charging of Electric Autonomous Vehicles (1911.03746v1)

Published 9 Nov 2019 in cs.CY and cs.NI

Abstract: Electric Autonomous Vehicles (EAVs) have gained increasing attention of industry, governments and scientific communities concerned about issues related to classic transportation including accidents and casualties, gas emissions and air pollution, intensive traffic and city viability. One of the aspects, however, that prevent a broader adoption of this technology is the need for human interference to charge EAVs, which is still mostly manual and time-consuming. This study approaches such a problem by introducing the Inno-EAV, an open-source charging framework for EAVs that employs machine-to-machine (M2M) distributed communication. The idea behind M2M is to have networked devices that can interact, exchange information and perform actions without any manual assistance of humans. The advantages of the Inno-EAV include the automation of charging processes and the collection of relevant data that can support better decision making in the spheres of energy distribution. In this paper, we present the software design of the framework, the development process, the emphasis on the distributed architecture and the networked communication, and we discuss the back-end database that is used to store information about car owners, cars, and charging stations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.