Papers
Topics
Authors
Recent
2000 character limit reached

Tangency property and prior-saturation points in minimal time problems in the plane (1911.03652v2)

Published 9 Nov 2019 in math.OC

Abstract: In this paper, we consider minimal time problems governed by control-affine-systems in the plane, and we focus on the synthesis problem in presence of a singular locus that involves a saturation point for the singular control. After giving sufficient conditions on the data ensuring occurence of a prior-saturation point and a switching curve, we show that the bridge (i.e., the optimal bang arc issued from the singular locus at this point) is tangent to the switching curve at the prior-saturation point. This property is proved using the Pontryagin Maximum Principle that also provides a set of non-linear equations that can be used to compute the prior-saturation point. These issues are illustrated on a fed-batch model in bioprocesses and on a Magnetic Resonance Imaging (MRI) model for which minimal time syntheses for the point-to-point problem are discussed.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.