Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

Sentiment analysis model for Twitter data in Polish language (1911.00985v1)

Published 3 Nov 2019 in cs.CL, cs.IR, cs.LG, and cs.SI

Abstract: Text mining analysis of tweets gathered during Polish presidential election on May 10th, 2015. The project included implementation of engine to retrieve information from Twitter, building document corpora, corpora cleaning, and creating Term-Document Matrix. Each tweet from the text corpora was assigned a category based on its sentiment score. The score was calculated using the number of positive and/or negative emoticons and Polish words in each document. The result data set was used to train and test four machine learning classifiers, to select these providing most accurate automatic tweet classification results. The Naive Bayes and Maximum Entropy algorithms achieved the best accuracy of respectively 71.76% and 77.32%. All implementation tasks were completed using R programming language.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)