Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Explicit Explore-Exploit Algorithms in Continuous State Spaces (1911.00617v2)

Published 1 Nov 2019 in cs.LG, cs.AI, and stat.ML

Abstract: We present a new model-based algorithm for reinforcement learning (RL) which consists of explicit exploration and exploitation phases, and is applicable in large or infinite state spaces. The algorithm maintains a set of dynamics models consistent with current experience and explores by finding policies which induce high disagreement between their state predictions. It then exploits using the refined set of models or experience gathered during exploration. We show that under realizability and optimal planning assumptions, our algorithm provably finds a near-optimal policy with a number of samples that is polynomial in a structural complexity measure which we show to be low in several natural settings. We then give a practical approximation using neural networks and demonstrate its performance and sample efficiency in practice.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.