Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comb Convolution for Efficient Convolutional Architecture (1911.00387v1)

Published 1 Nov 2019 in cs.CV

Abstract: Convolutional neural networks (CNNs) are inherently suffering from massively redundant computation (FLOPs) due to the dense connection pattern between feature maps and convolution kernels. Recent research has investigated the sparse relationship between channels, however, they ignored the spatial relationship within a channel. In this paper, we present a novel convolutional operator, namely comb convolution, to exploit the intra-channel sparse relationship among neurons. The proposed convolutional operator eliminates nearly 50% of connections by inserting uniform mappings into standard convolutions and removing about half of spatial connections in convolutional layer. Notably, our work is orthogonal and complementary to existing methods that reduce channel-wise redundancy. Thus, it has great potential to further increase efficiency through integrating the comb convolution to existing architectures. Experimental results demonstrate that by simply replacing standard convolutions with comb convolutions on state-of-the-art CNN architectures (e.g., VGGNets, Xception and SE-Net), we can achieve 50% FLOPs reduction while still maintaining the accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dandan Li (22 papers)
  2. Yuan Zhou (251 papers)
  3. Shuwei Huo (5 papers)
  4. Sun-Yuan Kung (19 papers)

Summary

We haven't generated a summary for this paper yet.