Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DyNet: Dynamic Convolution for Accelerating Convolutional Neural Networks (2004.10694v1)

Published 22 Apr 2020 in cs.CV and cs.LG

Abstract: Convolution operator is the core of convolutional neural networks (CNNs) and occupies the most computation cost. To make CNNs more efficient, many methods have been proposed to either design lightweight networks or compress models. Although some efficient network structures have been proposed, such as MobileNet or ShuffleNet, we find that there still exists redundant information between convolution kernels. To address this issue, we propose a novel dynamic convolution method to adaptively generate convolution kernels based on image contents. To demonstrate the effectiveness, we apply dynamic convolution on multiple state-of-the-art CNNs. On one hand, we can reduce the computation cost remarkably while maintaining the performance. For ShuffleNetV2/MobileNetV2/ResNet18/ResNet50, DyNet can reduce 37.0/54.7/67.2/71.3% FLOPs without loss of accuracy. On the other hand, the performance can be largely boosted if the computation cost is maintained. Based on the architecture MobileNetV3-Small/Large, DyNet achieves 70.3/77.1% Top-1 accuracy on ImageNet with an improvement of 2.9/1.9%. To verify the scalability, we also apply DyNet on segmentation task, the results show that DyNet can reduce 69.3% FLOPs while maintaining Mean IoU on segmentation task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yikang Zhang (18 papers)
  2. Jian Zhang (543 papers)
  3. Qiang Wang (271 papers)
  4. Zhao Zhong (14 papers)
Citations (80)

Summary

We haven't generated a summary for this paper yet.