Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions (1809.01330v1)

Published 5 Sep 2018 in cs.CV

Abstract: Convolutional neural networks (CNNs) have shown great capability of solving various artificial intelligence tasks. However, the increasing model size has raised challenges in employing them in resource-limited applications. In this work, we propose to compress deep models by using channel-wise convolutions, which re- place dense connections among feature maps with sparse ones in CNNs. Based on this novel operation, we build light-weight CNNs known as ChannelNets. Channel- Nets use three instances of channel-wise convolutions; namely group channel-wise convolutions, depth-wise separable channel-wise convolutions, and the convolu- tional classification layer. Compared to prior CNNs designed for mobile devices, ChannelNets achieve a significant reduction in terms of the number of parameters and computational cost without loss in accuracy. Notably, our work represents the first attempt to compress the fully-connected classification layer, which usually accounts for about 25% of total parameters in compact CNNs. Experimental results on the ImageNet dataset demonstrate that ChannelNets achieve consistently better performance compared to prior methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hongyang Gao (23 papers)
  2. Zhengyang Wang (48 papers)
  3. Shuiwang Ji (122 papers)
Citations (67)