Finite and infinite Euler products of Ramanujan expansions (1910.14640v2)
Abstract: All the $F:$N$\rightarrow $C having Ramanujan expansion $F(a)=\sum_{q=1}{\infty}G(q)c_q(a)$ (here $c_q(a)$ is the Ramanujan sum) pointwise converging in $a\in $N, with $G:$N$\rightarrow $C a multiplicative function, may be factored into two Ramanujan expansions, one of which is a finite Euler product : details in our Main Theorem. This is a general result, with unexpected and useful consequences, esp., for the Ramanujan expansion of null-function, say 0. The Main Theorem doesn't require other analytic assumptions, as pointwise convergence suffices; this depends on a general property of Euler $p-$factors (the factors in Euler products) for the general term $G(q)c_q(a)$; namely, once fixed $a\in $N (and prime $p$), the $p-$Euler factor of $G(q)c_q(a)$ (involving all $p-$powers) has a finite number of non-vanishing terms (depending on $a$) : see our Main Lemma. In case we also add some other hypotheses, like the absolute convergence, we get more classical Euler products: the infinite ones. For the Ramanujan expansion of 0 this strong hypothesis makes the class of 0 Ramanujan coefficients much smaller; also excluding Ramanujan's $G(q)=1/q$ and Hardy's $G(q)=1/\varphi(q)$ ($\varphi$ is Euler's totient function). Our Main Theorem, instead, suffices to classify all the multiplicative Ramanujan coefficients for 0, so we also announce and (partially) prove this Classification.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.