Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crop Height and Plot Estimation for Phenotyping from Unmanned Aerial Vehicles using 3D LiDAR (1910.14031v3)

Published 30 Oct 2019 in cs.RO and cs.CV

Abstract: We present techniques to measure crop heights using a 3D Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV). Knowing the height of plants is crucial to monitor their overall health and growth cycles, especially for high-throughput plant phenotyping. We present a methodology for extracting plant heights from 3D LiDAR point clouds, specifically focusing on plot-based phenotyping environments. We also present a toolchain that can be used to create phenotyping farms for use in Gazebo simulations. The tool creates a randomized farm with realistic 3D plant and terrain models. We conducted a series of simulations and hardware experiments in controlled and natural settings. Our algorithm was able to estimate the plant heights in a field with 112 plots with a root mean square error (RMSE) of 6.1 cm. This is the first such dataset for 3D LiDAR from an airborne robot over a wheat field. The developed simulation toolchain, algorithmic implementation, and datasets can be found on the GitHub repository located at https://github.com/hsd1121/PointCloudProcessing.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com