Papers
Topics
Authors
Recent
2000 character limit reached

Detection and Isolation of Adversaries in Decentralized Optimization for Non-Strongly Convex Objectives (1910.13020v1)

Published 29 Oct 2019 in eess.SY and cs.SY

Abstract: Decentralized optimization has found a significant utility in recent years, as a promising technique to overcome the curse of dimensionality when dealing with large-scale inference and decision problems in big data. While these algorithms are resilient to node and link failures, they however, are not inherently Byzantine fault-tolerant towards insider data injection attacks. This paper proposes a decentralized robust subgradient push (RSGP) algorithm for detection and isolation of malicious nodes in the network for optimization non-strongly convex objectives. In the attack considered in this work, the malicious nodes follow the algorithmic protocols, but can alter their local functions arbitrarily. However, we show that in sufficiently structured problems, the method proposed is effective in revealing their presence. The algorithm isolates detected nodes from the regular nodes, thereby mitigating the ill-effects of malicious nodes. We also provide performance measures for the proposed method.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.