A Basis of Analytic Functionals for CFTs in General Dimension (1910.12855v3)
Abstract: We develop an analytic approach to the four-point crossing equation in CFT, for general spacetime dimension. In a unitary CFT, the crossing equation (for, say, the s- and t-channel expansions) can be thought of as a vector equation in an infinite-dimensional space of complex analytic functions in two variables, which satisfy a boundedness condition in the u-channel Regge limit. We identify a useful basis for this space of functions, consisting of the set of s- and t-channel conformal blocks of double-twist operators in mean field theory. We describe two independent algorithms to construct the dual basis of linear functionals, and work out explicitly many examples. Our basis of functionals appears to be closely related to the CFT dispersion relation recently derived by Carmi and Caron-Huot.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.