Papers
Topics
Authors
Recent
2000 character limit reached

On the Linear Independence of Finite Wavelet Systems Generated by Schwartz Functions or Functions with certain behavior at infinity (1910.12289v1)

Published 27 Oct 2019 in math.FA

Abstract: One of the motivations to state HRT conjecture on the linear independence of finite Gabor systems was the fact that there are linearly dependent Finite Wavelet Systems (FWS). Meanwhile, there are also many examples of linearly independent FWS, some of which are presented in this paper. We prove the linear independence of every three point FWS generated by a nonzero Schwartz function and with any number of points if the FWS is generated by a nonzero Schwartz function, for which the absolute value of the Fourier transform is decreasing at infinity. We also prove the linear independence of any FWS generated by a nonzero square integrable function, for which the Fourier transform has certain behavior at infinity. Such a function can be any square integrable function that is a linear complex combination of real valued rational and exponential functions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.