Papers
Topics
Authors
Recent
2000 character limit reached

Large Scale Model Predictive Control with Neural Networks and Primal Active Sets (1910.10835v2)

Published 23 Oct 2019 in cs.LG, cs.SY, eess.SY, math.OC, and stat.ML

Abstract: This work presents an explicit-implicit procedure to compute a model predictive control (MPC) law with guarantees on recursive feasibility and asymptotic stability. The approach combines an offline-trained fully-connected neural network with an online primal active set solver. The neural network provides a control input initialization while the primal active set method ensures recursive feasibility and asymptotic stability. The neural network is trained with a primal-dual loss function, aiming to generate control sequences that are primal feasible and meet a desired level of suboptimality. Since the neural network alone does not guarantee constraint satisfaction, its output is used to warm start the primal active set method online. We demonstrate that this approach scales to large problems with thousands of optimization variables, which are challenging for current approaches. Our method achieves a 2x reduction in online inference time compared to the best method in a benchmark suite of different solver and initialization strategies.

Citations (79)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.