Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Well-Founded and Recursive Coalgebras

Published 21 Oct 2019 in cs.LO | (1910.09401v2)

Abstract: This paper studies fundamental questions concerning category-theoretic models of induction and recursion. We are concerned with the relationship between well-founded and recursive coalgebras for an endofunctor. For monomorphism preserving endofunctors on complete and well-powered categories every coalgebra has a well-founded part, and we provide a new, shorter proof that this is the coreflection in the category of all well-founded coalgebras. We present a new more general proof of Taylor's General Recursion Theorem that every well-founded coalgebra is recursive, and we study under which hypothesis the converse holds. In addition, we present a new equivalent characterization of well-foundedness: a coalgebra is well-founded iff it admits a coalgebra-to-algebra morphism to the initial algebra.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.