Papers
Topics
Authors
Recent
2000 character limit reached

Unitary representations of the $\mathcal{W}_3$-algebra with $c\geq 2$

Published 18 Oct 2019 in math.RT, hep-th, math-ph, math.MP, and math.QA | (1910.08334v2)

Abstract: We prove unitarity of the vacuum representation of the $\mathcal{W}_3$-algebra for all values of the central charge $c\geq 2$. We do it by modifying the free field realization of Fateev and Zamolodchikov resulting in a representation which, by a nontrivial argument, can be shown to be unitary on a certain invariant subspace, although it is not unitary on the full space of the two currents needed for the construction. These vacuum representations give rise to simple unitary vertex operator algebras. We also construct explicitly unitary representations for many positive lowest weight values. Taking into account the known form of the Kac determinants, we then completely clarify the question of unitarity of the irreducible lowest weight representations of the $\mathcal{W}_3$-algebra in the $2\leq c\leq 98$ region.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.