Papers
Topics
Authors
Recent
2000 character limit reached

WKB expansion of Yang-Yang generating function and Bergman tau-function (1910.07140v3)

Published 16 Oct 2019 in math-ph, math.MP, and nlin.SI

Abstract: We study the symplectic properties of the monodromy map of second order equations on a Riemann surface whose potential is meromorphic with double poles. We show that the Poisson bracket defined in terms of periods of meromorphic quadratic differential implies the Goldman Poisson structure on the monodromy manifoldThese results are applied to the WKB analysis of the equation. It is shown that the leading term in the WKB expansion of the generating function of the monodromy symplectomorphism (the "Yang-Yang function" of Nekrasov, Rosly and Shatashvili) is determined by the Bergman tau-function on the moduli space of meromorphic quadratic differentials.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.