2000 character limit reached
Einstein hypersurfaces of $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ (1910.06930v1)
Published 15 Oct 2019 in math.DG
Abstract: In this paper, we classify the Einstein hypersurfaces of $\mathbb{S}n \times \mathbb{R}$ and $\mathbb{H}n \times \mathbb{R}$. We use the characterization of the hypersurfaces of $\mathbb{S}n \times \mathbb{R}$ and $\mathbb{H}n \times \mathbb{R}$ whose tangent component of the unit vector field spanning the factor $\mathbb{R}$ is a principal direction and the theory of isoparametric hypersurfaces of space forms to show that Einstein hypersurfaces of $\mathbb{S}n \times \mathbb{R}$ and $\mathbb{H}n \times \mathbb{R}$ must have constant sectional curvature.