The D_8-tower of weak Jacobi forms and applications (1910.05226v1)
Abstract: We construct a tower of arithmetic generators of the bigraded polynomial ring J_{,}{w, O}(D_n) of weak Jacobi modular forms invariant with respect to the full orthogonal group O(D_n) of the root lattice D_n for 2\le n\le 8. This tower corresponds to the tower of strongly reflective modular forms on the orthogonal groups of signature (2,n) which determine the Lorentzian Kac-Moody algebras related to the BCOV (Bershadsky-Cecotti-Ooguri-Vafa)-analytic torsions. We prove that the main three generators of index one of the graded ring satisfy a special system of modular differential equations. We found also a general modular differential equation of the generator of weight 0 and index 1 which generates the automorphic discriminant of the moduli space of Enriques surfaces.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.