Moduli of double covers and degree one del Pezzo surfaces (1910.05198v1)
Abstract: Given a degree one del Pezzo surface with canonical singularities, the linear series generated by twice the anti-canonical divisor exhibits the surface as the double cover of the quadric cone branched along a sextic curve. It is natural to ask if this description extends to the boundary of a compactification of the moduli space of degree one del Pezzo surfaces. The goal of this paper is to show that this is indeed the case. In particular, we give an explicit classification of the boundary of the moduli space of anti-canonically polarized broken del Pezzo surfaces of degree one as double covers of degenerations of the quadric cone.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.