Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-modal knowledge distillation for action recognition (1910.04641v1)

Published 10 Oct 2019 in cs.CV

Abstract: In this work, we address the problem how a network for action recognition that has been trained on a modality like RGB videos can be adapted to recognize actions for another modality like sequences of 3D human poses. To this end, we extract the knowledge of the trained teacher network for the source modality and transfer it to a small ensemble of student networks for the target modality. For the cross-modal knowledge distillation, we do not require any annotated data. Instead we use pairs of sequences of both modalities as supervision, which are straightforward to acquire. In contrast to previous works for knowledge distillation that use a KL-loss, we show that the cross-entropy loss together with mutual learning of a small ensemble of student networks performs better. In fact, the proposed approach for cross-modal knowledge distillation nearly achieves the accuracy of a student network trained with full supervision.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fida Mohammad Thoker (10 papers)
  2. Juergen Gall (121 papers)
Citations (79)

Summary

We haven't generated a summary for this paper yet.