Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Desingularization of vortices for 2D steady Euler flows via the vorticity method (1910.03758v1)

Published 9 Oct 2019 in math.AP

Abstract: In this paper, we consider steady Euler flows in a planar bounded domain in which the vorticity is sharply concentrated in a finite number of disjoint regions of small diameter. Such flows are closely related to the point vortex model and can be regarded as desingularization of point vortices. By an adaption of the vorticity method, we construct a family of steady Euler flows in which the vorticity is concentrated near a global minimum point of the Robin function of the domain, and the corresponding stream function satisfies a semilinear elliptic equation with a given profile function. Furthermore, for any given isolated minimum point $(\bar{x}_1,\cdot\cdot\cdot,\bar{x}_k)$ of the Kirchhoff-Routh function of the domain, we prove that there exists a family of steady Euler flows whose vorticity is supported in $k$ small regions near $\bar{x}_i$, and near each $\bar{x}_i$ the corresponding stream function satisfies a semilinear elliptic equation with a given profile function.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.