Papers
Topics
Authors
Recent
2000 character limit reached

Causal Inference for Comprehensive Cohort Studies

Published 8 Oct 2019 in stat.ME | (1910.03531v1)

Abstract: In a comprehensive cohort study of two competing treatments (say, A and B), clinically eligible individuals are first asked to enroll in a randomized trial and, if they refuse, are then asked to enroll in a parallel observational study in which they can choose treatment according to their own preference. We consider estimation of two estimands: (1) comprehensive cohort causal effect -- the difference in mean potential outcomes had all patients in the comprehensive cohort received treatment A vs. treatment B and (2) randomized trial causal effect -- the difference in mean potential outcomes had all patients enrolled in the randomized trial received treatment A vs. treatment B. For each estimand, we consider inference under various sets of unconfoundedness assumptions and construct semiparametric efficient and robust estimators. These estimators depend on nuisance functions, which we estimate, for illustrative purposes, using generalized additive models. Using the theory of sample splitting, we establish the asymptotic properties of our proposed estimators. We also illustrate our methodology using data from the Bypass Angioplasty Revascularization Investigation (BARI) randomized trial and observational registry to evaluate the effect of percutaneous transluminal coronary balloon angioplasty versus coronary artery bypass grafting on 5-year mortality. To evaluate the finite sample performance of our estimators, we use the BARI dataset as the basis of a realistic simulation study.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.