Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Paced Multi-Label Learning with Diversity (1910.03497v1)

Published 8 Oct 2019 in cs.LG, cs.IR, and stat.ML

Abstract: The major challenge of learning from multi-label data has arisen from the overwhelming size of label space which makes this problem NP-hard. This problem can be alleviated by gradually involving easy to hard tags into the learning process. Besides, the utilization of a diversity maintenance approach avoids overfitting on a subset of easy labels. In this paper, we propose a self-paced multi-label learning with diversity (SPMLD) which aims to cover diverse labels with respect to its learning pace. In addition, the proposed framework is applied to an efficient correlation-based multi-label method. The non-convex objective function is optimized by an extension of the block coordinate descent algorithm. Empirical evaluations on real-world datasets with different dimensions of features and labels imply the effectiveness of the proposed predictive model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.