Papers
Topics
Authors
Recent
2000 character limit reached

On a Tauberian Theorem of Ingham and Euler-Maclaurin Summation

Published 7 Oct 2019 in math.NT and math.CO | (1910.03036v3)

Abstract: We discuss two theorems in analytic number theory and combinatory analysis that have seen increased use in recent years. A corollary to a Tauberian theorem of Ingham allows one to quickly prove asymptotic formulas for arithmetic sequences, so long as the corresponding generating function exhibits exponential growth of a certain form near its radius of convergence. Two common methods for proving the required analytic behavior are modular transformations and Euler-Maclaurin summation. However, these results are sometimes stated without certain technical conditions that are necessary for the complex analytic techniques that appear in Ingham's proof. We carefully examine the precise statements and proofs of these results, and find that in practice, the technical conditions are satisfied for those cases appearing in recent applications. We also generalize the classical approach of Euler-Maclaurin summation in order to prove asymptotic expansions for series with complex values, simple poles, or multi-dimensional summation indices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.