Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Effects of the Problem Hamiltonian Parameters on the Minimum Spectral Gap in Adiabatic Quantum Optimization (1910.02985v2)

Published 7 Oct 2019 in quant-ph

Abstract: We study the relation between the Ising problem Hamiltonian parameters and the minimum spectral gap (min-gap) of the system Hamiltonian in the Ising-based quantum annealer. The main argument we use in this paper to assess the performance of a QA algorithm is the presence or absence of an anti-crossing during quantum evolution. For this purpose, we introduce a new parametrization definition of the anti-crossing. Using the Maximum-weighted Independent Set (MIS) problem in which there are flexible parameters (energy penalties J between pairs of edges) in an Ising formulation as the model problem, we construct examples to show that by changing the value of J, we can change the quantum evolution from one that has an anti-crossing (that results in an exponential small min-gap) to one that does not have, or the other way around, and thus drastically change (increase or decrease) the min-gap. However, we also show that by changing the value of $J$ alone, one can not avoid the anti-crossing. We recall a polynomial reduction from an Ising problem to an MIS problem to show that the flexibility of changing parameters without changing the problem to be solved can be applied to any Ising problem. As an example, we show that by such a reduction alone, it is possible to remove the anti-crossing and thus increase the min-gap. Our anti-crossing definition is necessarily scaling invariant as scaling the problem Hamiltonian does not change the nature (i.e. presence or absence) of an anti-crossing. As a side note, we show exactly how the min-gap is scaled if we scale the problem Hamiltonian by a constant factor.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.