Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Enriched Medical Concept Generation for Chest X-ray Images (1910.02935v1)

Published 7 Oct 2019 in cs.LG, cs.CV, eess.IV, and stat.ML

Abstract: Decision support tools that rely on supervised learning require large amounts of expert annotations. Using past radiological reports obtained from hospital archiving systems has many advantages as training data above manual single-class labels: they are expert annotations available in large quantities, covering a population-representative variety of pathologies, and they provide additional context to pathology diagnoses, such as anatomical location and severity. Learning to auto-generate such reports from images present many challenges such as the difficulty in representing and generating long, unstructured textual information, accounting for spelling errors and repetition/redundancy, and the inconsistency across different annotators. We therefore propose to first learn visually-informative medical concepts from raw reports, and, using the concept predictions as image annotations, learn to auto-generate structured reports directly from images. We validate our approach on the OpenI [2] chest x-ray dataset, which consists of frontal and lateral views of chest x-ray images, their corresponding raw textual reports and manual medical subject heading (MeSH ) annotations made by radiologists.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Aydan Gasimova (2 papers)
Citations (10)