2000 character limit reached
Idempotence of finitely generated commutative semifields
Published 6 Oct 2019 in math.AC and math.RA | (1910.02457v1)
Abstract: We prove that a commutative parasemifield S is additively idempotent provided that it is finitely generated as a semiring. Consequently, every proper commutative semifield T that is finitely generated as a semiring is either additively constant or additively idempotent. As part of the proof, we use the classification of finitely generated lattice-ordered groups to prove that a certain monoid associated to the parasemifield S has a distinguished geometrical property called prismality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.