Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Idempotence of finitely generated commutative semifields (1910.02457v1)

Published 6 Oct 2019 in math.AC and math.RA

Abstract: We prove that a commutative parasemifield S is additively idempotent provided that it is finitely generated as a semiring. Consequently, every proper commutative semifield T that is finitely generated as a semiring is either additively constant or additively idempotent. As part of the proof, we use the classification of finitely generated lattice-ordered groups to prove that a certain monoid associated to the parasemifield S has a distinguished geometrical property called prismality.

Summary

We haven't generated a summary for this paper yet.