Papers
Topics
Authors
Recent
2000 character limit reached

Causal Induction from Visual Observations for Goal Directed Tasks

Published 3 Oct 2019 in cs.LG, cs.AI, cs.CV, and stat.ML | (1910.01751v1)

Abstract: Causal reasoning has been an indispensable capability for humans and other intelligent animals to interact with the physical world. In this work, we propose to endow an artificial agent with the capability of causal reasoning for completing goal-directed tasks. We develop learning-based approaches to inducing causal knowledge in the form of directed acyclic graphs, which can be used to contextualize a learned goal-conditional policy to perform tasks in novel environments with latent causal structures. We leverage attention mechanisms in our causal induction model and goal-conditional policy, enabling us to incrementally generate the causal graph from the agent's visual observations and to selectively use the induced graph for determining actions. Our experiments show that our method effectively generalizes towards completing new tasks in novel environments with previously unseen causal structures.

Citations (62)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.