Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Input-to-state stability of infinite-dimensional systems: recent results and open questions (1910.01714v3)

Published 3 Oct 2019 in math.OC, math.AP, and math.DS

Abstract: In a pedagogical but exhaustive manner, this survey reviews the main results on input-to-state stability (ISS) for infinite-dimensional systems. This property allows estimating the impact of inputs and initial conditions on both the intermediate values and the asymptotic bound on the solutions. ISS has unified the input-output and Lyapunov stability theories and is a crucial property in the stability theory of control systems as well as for many applications whose dynamics depend on parameters, unknown perturbations, or other inputs. In this paper, starting from classic results for nonlinear ordinary differential equations, we motivate the study of ISS property for distributed parameter systems. Then fundamental properties are given, as an ISS superposition theorem and characterizations of (global and local) ISS in terms of Lyapunov functions. We explain in detail the functional-analytic approach to ISS theory of linear systems with unbounded input operators, with special attention devoted to ISS theory of boundary control systems. The Lyapunov method is shown to be very useful for both linear and nonlinear models, including parabolic and hyperbolic partial differential equations. Next, we show the efficiency of the ISS framework to study the stability of large-scale networks, coupled either via the boundary or via the interior of the spatial domain. ISS methodology allows reducing the stability analysis of complex networks, by considering the stability properties of its components and the interconnection structure between the subsystems. An extra section is devoted to ISS theory of time-delay systems with the emphasis on techniques, which are particularly suited for this class of systems. Finally, numerous applications are considered in this survey, where ISS properties play a crucial role in their study. This survey suggests many open problems throughout the paper.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.