Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Identifiability in Phylogenetics using Algebraic Matroids (1909.13754v1)

Published 30 Sep 2019 in math.CO, math.AG, and q-bio.PE

Abstract: Identifiability is a crucial property for a statistical model since distributions in the model uniquely determine the parameters that produce them. In phylogenetics, the identifiability of the tree parameter is of particular interest since it means that phylogenetic models can be used to infer evolutionary histories from data. In this paper we introduce a new computational strategy for proving the identifiability of discrete parameters in algebraic statistical models that uses algebraic matroids naturally associated to the models. We then use this algorithm to prove that the tree parameters are generically identifiable for 2-tree CFN and K3P mixtures. We also show that the $k$-cycle phylogenetic network parameter is identifiable under the K2P and K3P models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube