Heisenberg uniqueness pairs for the hyperbola (1909.12076v2)
Abstract: Let $\Gamma$ be the hyperbola ${(x,y)\in\mathbb R2 : xy=1}$ and $\Lambda_\beta$ be the lattice-cross defined by $\Lambda_\beta=\left(\mathbb Z\times{0}\right)\cup\left({0}\times\beta\mathbb Z\right)$ in $\mathbb R2,$ where $\beta$ is a positive real. A result of Hedenmalm and Montes-Rodr\'iguez says that $\left(\Gamma,\Lambda_\beta\right)$ is a Heisenberg uniqueness pair if and only if $\beta\leq1.$ In this paper, we show that for a rational perturbation of $\Lambda_\beta,$ namely [\Lambda_\beta\theta=\left((\mathbb Z+{\theta})\times{0}\right)\cup\left({0}\times\beta\mathbb Z\right),] where $\theta=1/{p},~\text{for some}~{p}\in\mathbb N$ and $\beta$ is a positive real, the pair $\left(\Gamma,\Lambda_\beta\theta\right)$ is a Heisenberg uniqueness pair if and only if $\beta\leq{p}.$
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.