Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quadratic double ramification integrals and the noncommutative KdV hierarchy (1909.11617v3)

Published 25 Sep 2019 in math.AG, math-ph, and math.MP

Abstract: In this paper we compute the intersection number of two double ramification cycles (with different ramification profiles) and the top Chern class of the Hodge bundle on the moduli space of stable curves of any genus. These quadratic double ramification integrals are the main ingredient for the computation of the double ramification hierarchy associated to the infinite dimensional partial cohomological field theory given by $\exp(\mu2 \Theta)$ where $\mu$ is a parameter and $\Theta$ is Hain's theta class, appearing in Hain's formula for the double ramification cycle on the moduli space of curves of compact type. This infinite rank double ramification hierarchy can be seen as a rank $1$ integrable system in two space and one time dimensions. We prove that it coincides with a natural analogue of the KdV hierarchy on a noncommutative Moyal torus.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.