2000 character limit reached
Koszul duality for compactly generated derived categories of second kind (1909.11399v3)
Published 25 Sep 2019 in math.CT, math.AT, and math.RT
Abstract: For any dg algebra $A$ we construct a closed model category structure on dg $A$-modules such that the corresponding homotopy category is compactly generated by dg $A$-modules that are finitely generated and free over $A$ (disregarding the differential). We prove that this closed model category is Quillen equivalent to the category of comodules over a certain, possibly nonconilpotent dg coalgebra, a so-called extended bar construction of $A$. This generalises and complements certain aspects of dg Koszul duality for associative algebras.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.