Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CAGE: Context-Aware Grasping Engine (1909.11142v3)

Published 24 Sep 2019 in cs.RO

Abstract: Semantic grasping is the problem of selecting stable grasps that are functionally suitable for specific object manipulation tasks. In order for robots to effectively perform object manipulation, a broad sense of contexts, including object and task constraints, needs to be accounted for. We introduce the Context-Aware Grasping Engine, which combines a novel semantic representation of grasp contexts with a neural network structure based on the Wide & Deep model, capable of capturing complex reasoning patterns. We quantitatively validate our approach against three prior methods on a novel dataset consisting of 14,000 semantic grasps for 44 objects, 7 tasks, and 6 different object states. Our approach outperformed all baselines by statistically significant margins, producing new insights into the importance of balancing memorization and generalization of contexts for semantic grasping. We further demonstrate the effectiveness of our approach on robot experiments in which the presented model successfully achieved 31 of 32 suitable grasps. The code and data are available at: https://github.com/wliu88/rail_semantic_grasping

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Weiyu Liu (22 papers)
  2. Angel Daruna (10 papers)
  3. Sonia Chernova (60 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.