Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Generalized Entropies in Mutual Information Medical Image Registration (1909.10690v1)

Published 24 Sep 2019 in eess.IV and cs.CV

Abstract: Mutual information (MI) is the standard method used in image registration and the most studied one but can diverge and produce wrong results when used in an automated manner. In this study we compared the results of the ITK Mattes MI function, used in 3D Slicer and ITK derived software solutions, and our own MICUDA Shannon and Tsallis MI functions under the translation, rotation and scale transforms in a 3D mathematical space. This comparison allows to understand why registration fails in some circumstances and how to produce a more robust automated algorithm to register medical images. Since our algorithms were designed to use GPU computations we also have a huge gain in speed while improving the quality of registration.

Summary

We haven't generated a summary for this paper yet.