Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Learning of General Transformations for Data Augmentation (1909.09801v1)

Published 21 Sep 2019 in cs.CV and stat.ML

Abstract: Data augmentation (DA) is fundamental against overfitting in large convolutional neural networks, especially with a limited training dataset. In images, DA is usually based on heuristic transformations, like geometric or color transformations. Instead of using predefined transformations, our work learns data augmentation directly from the training data by learning to transform images with an encoder-decoder architecture combined with a spatial transformer network. The transformed images still belong to the same class but are new, more complex samples for the classifier. Our experiments show that our approach is better than previous generative data augmentation methods, and comparable to predefined transformation methods when training an image classifier.

Citations (9)

Summary

We haven't generated a summary for this paper yet.