Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Underwater Image Super-Resolution using Deep Residual Multipliers (1909.09437v3)

Published 20 Sep 2019 in eess.IV and cs.CV

Abstract: We present a deep residual network-based generative model for single image super-resolution (SISR) of underwater imagery for use by autonomous underwater robots. We also provide an adversarial training pipeline for learning SISR from paired data. In order to supervise the training, we formulate an objective function that evaluates the \textit{perceptual quality} of an image based on its global content, color, and local style information. Additionally, we present USR-248, a large-scale dataset of three sets of underwater images of 'high' (640x480) and 'low' (80x60, 160x120, and 320x240) spatial resolution. USR-248 contains paired instances for supervised training of 2x, 4x, or 8x SISR models. Furthermore, we validate the effectiveness of our proposed model through qualitative and quantitative experiments and compare the results with several state-of-the-art models' performances. We also analyze its practical feasibility for applications such as scene understanding and attention modeling in noisy visual conditions.

Citations (59)

Summary

We haven't generated a summary for this paper yet.