Papers
Topics
Authors
Recent
2000 character limit reached

Learning Your Way Without Map or Compass: Panoramic Target Driven Visual Navigation

Published 20 Sep 2019 in cs.RO, cs.AI, cs.CV, and cs.LG | (1909.09295v2)

Abstract: We present a robot navigation system that uses an imitation learning framework to successfully navigate in complex environments. Our framework takes a pre-built 3D scan of a real environment and trains an agent from pre-generated expert trajectories to navigate to any position given a panoramic view of the goal and the current visual input without relying on map, compass, odometry, or relative position of the target at runtime. Our end-to-end trained agent uses RGB and depth (RGBD) information and can handle large environments (up to $1031m2$) across multiple rooms (up to $40$) and generalizes to unseen targets. We show that when compared to several baselines our method (1) requires fewer training examples and less training time, (2) reaches the goal location with higher accuracy, and (3) produces better solutions with shorter paths for long-range navigation tasks.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.