Papers
Topics
Authors
Recent
2000 character limit reached

Minimizing closed geodesics on polygons and disks

Published 20 Sep 2019 in math.DG | (1909.09274v1)

Abstract: In this paper we study 1/k geodesics, those closed geodesics that minimize on all subintervals of length $L/k$, where $L$ is the length of the geodesic. We develop new techniques to study the minimizing properties of these curves on doubled polygons, and demonstrate a sequence of doubled polygons whose closed geodesics exhibit unbounded minimizing properties. We also compute the length of the shortest closed geodesic on doubled odd-gons and show that this length approaches 4 times the diameter.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.