Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Border effect corrections for diagonal line based recurrence quantification analysis measures (1909.09211v1)

Published 19 Sep 2019 in physics.data-an

Abstract: Recurrence Quantification Analysis (RQA) defines a number of quantifiers, which base upon diagonal line structures in the recurrence plot (RP). Due to the finite size of an RP, these lines can be cut by the borders of the RP and, thus, bias the length distribution of diagonal lines and, consequently, the line based RQA measures. In this letter we investigate the impact of the mentioned border effects and of the thickening of diagonal lines in an RP (caused by tangential motion) on the estimation of the diagonal line length distribution, quantified by its entropy. Although a relation to the Lyapunov spectrum is theoretically expected, the mentioned entropy yields contradictory results in many studies. Here we summarize correction schemes for both, the border effects and the tangential motion and systematically compare them to methods from the literature. We show that these corrections lead to the expected behavior of the diagonal line length entropy, in particular meaning zero values in case of a regular motion and positive values for chaotic motion. Moreover, we test these methods under noisy conditions, in order to supply practical tools for applied statistical research.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube