First-order system least squares finite-elements for singularly perturbed reaction-diffusion equations
Abstract: We propose a new first-order-system least squares (FOSLS) finite-element discretization for singularly perturbed reaction-diffusion equations. Solutions to such problems feature layer phenomena, and are ubiquitous in many areas of applied mathematics and modelling. There is a long history of the development of specialized numerical schemes for their accurate numerical approximation. We follow a well-established practice of employing a priori layer-adapted meshes, but with a novel finite-element method that yields a symmetric formulation while also inducing a so-called "balanced" norm. We prove continuity and coercivity of the FOSLS weak form, present a suitable piecewise uniform mesh, and report on the results of numerical experiments that demonstrate the accuracy and robustness of the method.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.